Making Apache Spark Effortless for All of Uber

Apache Spark is a foundational piece of Uber’s Big Data infrastructure that powers many critical aspects of our business. We currently run more than one hundred thousand Spark applications per day, across multiple different compute environments. Spark’s versatility, which allows us to build applications and run them everywhere that we need, makes this scale possible.
However, our ever-growing infrastructure means that these environments are constantly changing, making it increasingly difficult for both new and existing users to give their applications reliable access to data sources, compute resources, and supporting tools. Also, as the number of users grow, it becomes more challenging for the data team to communicate these environmental changes to users, and for us to understand exactly how Spark is being used.

This post is intense, to say the least. I don't think I've read anything that goes deeper on this topic, so strap in.


Want to receive more content like this in your inbox?